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I

 

n

 

 eukaryotic cells containing tandem repeated ribo-
somal RNA genes, there appears a specialized region
of chromatin, carrying out gene transcription, rRNA

processing, and nascent ribosomal subunit assembly—the
nucleolus. One of the first intracellular structures to be de-
scribed (Montgomery, 1898; Franke, 1988), the nucleolus
was established in the 1960s as the center of ribosome syn-
thesis (Schultz, 1966), culminating in the first visualization
of genes in action (Miller and Beatty, 1969). Recently it
has become evident, however, that the nucleolus is also
the site of several nonribosomal RNA processing and as-
sembly functions. These include maturation of signal rec-
ognition particle RNA (Jacobson and Pederson, 1998),
transfer RNA, U6 small nuclear RNA, telomerase RNA,
and some mRNAs (Pederson, 1998). In the envisioned
proto-eukaryotic ancestor, various RNA processing and
ribonucleoprotein assembly events may have all initially
been centered around a minimal genome to chemically fa-
cilitate the production of essential gene readout machines.
The nucleolus of today’s eukaryotes may be a descendent
of this concentrated region of genome readout. Beyond
these recently discovered, diverse nonribosomal RNA
processing and ribonucleoprotein assembly events in the
nucleolus, there is another set of provocative findings: the
presence in nucleoli of mitogenic growth factors as well as
cell cycle and growth factor-related proteins.

 

Growth Factors and Growth Regulatory Proteins in
the Nucleolus

 

Although there are numerous studies (of varying quality
and cogency) indicating the presence in nuclei of polypep-
tide growth factors and, in a few instances, growth factor
receptors (Burwen and Jones, 1987; Jans, 1994; Stacho-
wiak et al., 1997), the more salient point for this commen-
tary is that during the past few years a number of mitoge-
nic growth factors and other growth regulatory proteins
have been observed to be localized in the nucleolus. These
include basic fibroblast growth factor (Bouche et al., 1987;
Baldin et al., 1990; Moroianu and Riordan, 1994), acidic fi-
broblast growth factor (Moroianu and Riordan, 1994), an-

giogenin (Moroianu and Riordan, 1994), parathyroid hor-
mone-related peptide (pTHrP)

 

1

 

 (Henderson et al., 1995;
Nguyen and Karaplis, 1998), the Werner syndrome (WRN)
gene product (Marciniak et al., 1998), the B-type cyclin
p63

 

cdc13

 

 (Gallagher et al., 1993), and the oncogene c-

 

myb

 

–
associated protein p160 (Tavner et al., 1998). Although
this list seems brief at first glance, it is actually rather im-
pressive when one considers that most surveyors of the nu-
cleolar protein landscape have had no particular motiva-
tion to look for growth factors altogether.

Several of these aforementioned studies involved incu-
bating cells with exogenous growth factors, ostensibly ap-
proximating the in vivo paracrine/autocrine situation.
However, the cited study of pTHrP involved its transient
expression and nucleolar localization (Henderson et al.,
1995) and, in addition, these investigators observed that
endogenous pTHrP was present in nucleoli of cultured
neonatal osteoblasts. There are precedents in which alter-
native mRNA splicing or a switch in initiation codon leads
to the production of a growth factor lacking its normal
secretory signal peptide and, in some instances, subse-
quent nuclear localization (Maher et al., 1989; Acland et
al., 1990; Quarto et al., 1991; Vagner et al., 1996). The case
of pTHrP illustrates that this “intracrine” pathway can
lead not only to nuclear translocation but also localization
in the nucleolus.

 

Tyrosine Phosphorylation, a Hallmark of Growth 
Factor Signal Transduction, Also Occurs in the 
Nucleolus As Does Other Signal Transduction-related 
Protein Phosphorylation

 

Among numerous reports of protein tyrosine phosphory-
lation/dephosphorylation reactions in the nucleus alto-
gether (David et al., 1993; McLaughlin and Dixon, 1993;
Rohan et al., 1993), there are two reports of tyrosine phos-
phorylation of specifically nucleolar proteins: the yeast im-
munophilin Fpr3 (Wilson et al., 1997), and the protozoan

 

Trypanosoma brucei

 

 proteins Nopp44/46 (Das et al.,
1996). The tyrosine phosphorylation of Fpr3 is mediated
by casein kinase II (Wilson et al., 1997), an enzyme that
usually phosphorylates only serine or threonine in higher
eukaryotes but which also has specificity for tyrosine in
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both 

 

Saccharomyces cerevisiae

 

 and 

 

Saccharomyces

 

 

 

pombe

 

.
The immunophilin family of which the yeast nucleolar
Fpr3 protein is a member is defined by the immunosup-
pressive drug FK506 and its numerous intracellular targets
(Sigel and Dumont, 1992), and it is noteworthy in the
present context that one of these targets, the protein
FKB25, is known to associate both with casein kinase II
and the nucleolar protein nucleolin (Jin and Burakoff,
1993).

Of course, two mere instances of tyrosine phosphoryla-
tion of nucleolar proteins do not, by themselves, provide
anything more than a zephyr of a connection to the nucle-
olus as a center of mitogenic growth factor action, al-
though the Fpr3-FKB25–nucleolin connection is certainly
provocative. In addition to tyrosine phosphorylation of
nucleolar proteins, it has been observed that basic fibro-
blast growth factor binds to the 

 

b 

 

subunit of casein kinase
II, stimulating the serine/threonine phosphorylation of nu-
cleolin (Bonnet et al., 1996). Moreover, the nuclear enve-
lope phosphoinositide-based protein phosphorylation sys-
tem (Martelli et al., 1992; Divecha et al., 1993; Raben and
Jaken, 1994) displays multiple isoforms of protein kinase
C (PKC), some of which are nucleolar (Beckmann et al.,
1994). Indeed, one of the targets of nerve growth factor-
triggered PKC phosphorylation is, once again, nucleolin
(Zhou et al., 1997), and in a recent investigation evidence
was reported that neomycin blocks nuclear translocation
of angiogenin by virtue of this antibiotic’s inhibitory action
on phospholipase C (Hu, 1998).

An intriguing observation in relation to signal transduc-
tion-related phosphorylation of nucleolar proteins is the
finding that the aforementioned yeast nucleolar FK506
binding protein has homology with a protozoan (

 

Naegleria
gruberi

 

) nucleolar protein, BN46/51 (Goeckeler et al.,
1997), which is also found in the 

 

Naegleria

 

 basal body
(Trimbur and Walsh, 1992). The basal body is a special-
ized centriole that nucleates the assembly of flagellar and
ciliary microtubules into the 9 

 

1 

 

2 motif of the axoneme.
(

 

Naegleria

 

 shifts from ameboid locomotion to flagellar-
propelled swimming during its life cycle.) The basal body
is an autonomously replicating organelle, in which the
presence of a nucleic acid component has been long
sought unsuccessfully. That the nucleolus and basal body
of 

 

Naegleria

 

 share a common protein is itself interesting
with regard to the evolution of these two organelles, and
the fact that this protein shares homology with the yeast
nucleolar FK5060-binding protein serves to raise the pos-
sibility of a connection to signal transduction pathways.

 

Perspective

 

There is rarely anything to lose from thinking in the con-
text of evolution. The typical growth factors we know to-
day arose, or were refined, with the advent of metazoan
life, evolving (probably from ancient chemoattractants) as
ligands in step with their coemerging cell surface recep-
tors. However, some of today’s secreted growth factors
might be evolutionarily descended from proteins that were
once capable of triggering cell division from within, and in-
deed, as mentioned above, such intracrine pathways ap-
pear to operate in extant eukaryotes. In the single-cell
forebears of metazoa, it is likely that intracellular signal

 

proteins would have already been hewn to target on ge-
nomic sites at which growth-promoting genes resided.
Such intracellular signaling in the predecessors of the
metazoa may have embraced protein tyrosine phosphory-
lation and may have also shared elements with other repli-
cating domains of the cell in addition to the nuclear ge-
nome, the basal body for example. Today, more than two
billion years later (Han and Runnegar, 1992), we properly
see growth factors as primarily operatives on the cell sur-
face, binding receptors in the intercellular signaling life-
style that defines metazoan life, notwithstanding concur-
rently operating intracrine pathways as well.

How do nucleolus-localized growth factors actually
work? Of course, all roads that lead to the nucleolus would
logically suggest ribosome synthesis as the obvious target
of regulation. For example, fibroblast growth factor-medi-
ated phosphorylation of nucleolin has been implicated in
turning on ribosome production (Bouche et al., 1987; Bon-
net et al., 1996). It is certainly true that the rate of rRNA
gene transcription, pre-rRNA processing, and nascent ri-
bosome subunit assembly—the canonical roles of the nu-
cleolus—could be downstream elements in positively con-
trolling cell growth, although the typically long half-life of
cytoplasmic ribosomes (Loeb et al., 1965) might often
emerge as a limiting parameter in negative growth control
loops. But the recent reports that other, nonribosomal
RNA maturation events also occur in the nucleolus (Ja-
cobson and Pederson, 1998; Pederson, 1998) now suggest
other targets of growth control therein. The presence of
growth factors and cell cycle-related proteins in the nucle-
olus currently constitutes something of an intellectual way
station, neither an established piece of orthodoxy on the
one hand nor necessarily an opaque box on the other. We
need to know how these nucleolus-localized growth fac-
tors operate in gene readout, as the era of the plurifunc-
tional nucleolus now comes into view.
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